217 research outputs found

    Travel time and trajectory moments of conservative solutes in three dimensional heterogeneous porous media under mean uniform flow

    Get PDF
    We present expressions satisfied by the first statistical moments (mean and variance–covariance) of travel time and trajectory of conservative solute particles advected in a three-dimensional heterogeneous aquifer under uniform in the mean flow conditions. Closure of the model is obtained by means of a consistent second-order expansion in σY (standard deviation of the log hydraulic conductivity) of (statistical) moments of quantities of interest. As such, the results obtained are nominally limited to mildly non-uniform fields, with σY < 1. Resulting mean and variance of particles travel time and trajectory are functions of first and second moments and cross-moments of trajectory and velocity components. Our solution is applicable to infinite domains and is free of distributional assumptions. As an important application of the methodology we obtain closed-form expressions for the unconditional mean and variance of travel time and particle trajectory for isotropic log-conductivity domain characterized by an exponential variogram. This allows us to recover the non linear behavior of mean travel time versus distance, in agreement with numerical results published in the literature, as well as a non-linear effect in the mean trajectory. The analysis of trajectory variance allows recovering some known results regarding transverse macro-dispersion, evidencing some limitations typical of perturbation theory

    A Class-Kriging predictor for Functional Compositions with Application to Particle-Size Curves in Heterogeneous Aquifers

    Get PDF
    This work addresses the problem of characterizing the spatial field of soil particle-size distributions within a heterogeneous aquifer system. The medium is conceptualized as a composite system, characterized by spatially varying soil textural properties associated with diverse geomaterials. The heterogeneity of the system is modeled through an original hierarchical model for particle-size distributions that are here interpreted as points in the Bayes space of functional compositions. This theoretical framework allows performing spatial prediction of functional compositions through a functional compositional Class-Kriging predictor. To tackle the problem of lack of information arising when the spatial arrangement of soil types is unobserved, a novel clustering method is proposed, allowing to infer a grouping structure from sampled particle-size distributions. The proposed methodology enables one to project the complete information content embedded in the set of heterogeneous particle-size distributions to unsampled locations in the system. These developments are tested on a field application relying on a set of particle-size data observed within an alluvial aquifer in the Neckar river valley, in Germany

    Moment-based metrics for global sensitivity analysis of hydrological systems

    Get PDF
    We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth systems. Our approach allows assessing the impact of uncertain parameters on main features of the probability density function, pdf, of a target model output, y. These include the expected value of y, the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable assessment of higher order statistical moments can be computationally demanding, we couple our GSA approach with a surrogate model, approximating the full model response at a reduced computational cost. Here, we consider the generalized Polynomial Chaos Expansion (gPCE), other model reduction techniques being fully compatible with our theoretical framework. We demonstrate our approach through three test cases, including an analytical benchmark, a simplified scenario mimicking pumping in a coastal aquifer, and a laboratory-scale conservative transport experiment. Our results allow ascertaining which parameters can impact some moments of the model output pdf while being uninfluential to others. We also investigate the error associated with the evaluation of our sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that the construction of a surrogate model with increasing level of accuracy might be required depending on the statistical moment considered in the GSA. Our approach is fully compatible with (and can assist the development of) analysis techniques employed in the context of reduction of model complexity, model calibration, design of experiment, uncertainty quantification and risk assessment

    Object Oriented Geostatistical Simulation of Functional Compositions via Dimensionality Reduction in Bayes spaces

    Get PDF
    We address the problem of geostatistical simulation of spatial complex data, with emphasis on functional compositions (FCs). We pursue an object oriented geostatistical approach and interpret FCs as random points in a Bayes Hilbert space. This enables us to deal with data dimensionality and constraints by relying on a solid geometric basis, and to develop a simulation strategy consisting of: (i) optimal dimensionality reduction of the problem through a simplicial principal component analysis, and (ii) geostatistical simulation of random realizations of FCs via an approximate multivariate problem.We illustrate our methodology on a dataset of natural soil particle-size densities collected in an alluvial aquifer

    SciKit-GStat Uncertainty: A software extension to cope with uncertain geostatistical estimates

    Get PDF
    This study is focused on an extension of a well established geostatistical software to enable one to effectively and interactively cope with uncertainty in geostatistical applications. The extension includes a rich component library, pre-built interfaces and an online application. We discuss the concept of replacing the empirical variogram with its uncertainty bound. This enables one to acknowledge uncertainties characterizing the underlying geostatistical datasets and typical methodological approaches. This allows for a probabilistic description of the variogram and its parameters at the same time. Our approach enables (1) multiple interpretations of a sample and (2) a multi-model context for geostatistical applications. We focus the sample application on propagating observation uncertainties into manual variogram parametrization and analyze its effects. Using two different datasets, we show how insights on uncertainty can be used to reject variogram models, thus constraining the space of formally equally probable models to tackle the issue of parameter equifinality

    Interpretation of two-phase relative permeability curves through multiple formulations and Model Quality criteria

    Get PDF
    We illustrate the way formal model identification criteria can be employed to rank and evaluate a set of alternative models in the context of the interpretation of laboratory scale experiments yielding two-phase relative permeability curves. We consider a set of empirical two-phase relative permeability models (i.e., Corey, Chierici and LET) which are typically employed in industrial applications requiring water/oil relative permeability quantifications. Model uncertainty is quantified through the use of a set of model weights which are rendered by model posterior probabilities conditional on observations. These weights are then employed to (a) rank the models according to their relative skill to interpret the observations and (b) obtain model averaged results which allow accommodating within a unified theoretical framework uncertainties arising from differences amongst model structures. As a test bed for our study, we employ high quality two-phase relative permeability estimates resulting from steady-state imbibition experiments on two diverse porous media, a quartz Sand-pack and a Berea sandstone core, together with additional published datasets. The parameters of each model are estimated within a Maximum Likelihood framework. Our results highlight that in most cases the complexity of the problem appears to justify favoring a model with a high number of uncertain parameters over a simpler model structure. Posterior probabilities reveal that in several cases, most notably for the assessment of oil relative permeabilities, the weights associated with the simplest models is not negligible. This suggests that in these cases uncertainty quantification might benefit from a multi-model analysis, including both low- and high-complexity models. In most of the cases analyzed we find that model averaging leads to interpretations of the available data which are characterized by a higher degree of fidelity than that provided by the most skillful model

    Representative hydraulic conductivities in saturated groundwater flow

    Get PDF
    Heterogeneity is the single most salient feature of hydrogeology. An enormous amount of work has been devoted during the last 30 years to addressing this issue. Our objective is to synthesize and to offer a critical appraisal of results related to the problem of finding representative hydraulic conductivities. By representative hydraulic conductivity we mean a parameter controlling the average behavior of groundwater flow within an aquifer at a given scale. Three related concepts are defined: effective hydraulic conductivity, which relates the ensemble averages of flux and head gradient; equivalent conductivity, which relates the spatial averages of flux and head gradient within a given volume of an aquifer; and interpreted conductivity, which is the one derived from interpretation of field data. Most theoretical results are related to effective conductivity, and their application to real world scenarios relies on ergodic assumptions. Fortunately, a number of results are available suggesting that conventional hydraulic test interpretations yield (interpreted) hydraulic conductivity values that can be closely linked to equivalent and/or effective hydraulic conductivities. Complex spatial distributions of geologic hydrofacies and flow conditions have a strong impact upon the existence and the actual values of representative parameters. Therefore it is not surprising that a large body of literature provides particular solutions for simplified boundary conditions and geological settings, which are, nevertheless, useful for many practical applications. Still, frequent observations of scale effects imply that efforts should be directed at characterizing well‐connected stochastic random fields and at evaluating the corresponding representative hydraulic conductivitie
    corecore